Introduction

Isotopic labeling for protein expression analysis has become routine for quantitative proteomics studies. Reagents such as iTRAQ, ExacTag and ICAT are common tools used in this area. Label-free techniques can also be used in cases where isotopic labeling is impractical to perform. As a subsequent step to protein identification, some search engines provide modules for quantitation analysis based on these techniques. Here, we present a new software package designed to automatically quantify proteins from experiments using isotopic labeling or label-free techniques based on PEAKS [1] protein identification results

Methods

Flexible Label System

PEAKS Studio 5.0 provides a quantitation package that supports quantification data generated using three different techniques.

Isotopic labeling techniques where relative abundances are measured in the MS/MS scan

Because of chemical and electronic noise as well as very weak signals from (iTRAQ and ExacTag, etc.) peptides, the MS scans contain only a small portion of MS/MS spectra After digestion, peptides in a sample are specifically labeled. When corresponding to identifiable peptides. This typically results in a high rate the peptides are fragmented, part of the label falls off, producing of false positive identification. Database search engines and de novo reporter ions. PEAKS Quantitation allows the user to specify any sequencing tools are adequate in discarding the bad spectra; nevertheless, number of reporter ions generated by these reagents and their specific false positives abound, and plenty of time is wasted. Hence a filter that masses. The software will automatically collect the peak information eliminates poor spectra before the analysis can significantly improve of reporter ions and compute the correspondent ratios. throughput and robustness in a quantitation software. The algorithm included in the software had 99.61% accuracy in finding spectra of poor quality [2].

Isotopic labeling techniques where relative abundances are measured in the MS scan (ICAT and SILAC, etc.)

Cells growing in culture are labeled with heavy amino acids and incorporate these amino acids into their proteins. The same peptide from different samples will be labeled with amino acids with different masses and will therefore produce different reporter ions in the MS scan. PEAKS Quantitation allows any number of samples and any number of modifications in each sample. The software will automatically find the peaks corresponding to different samples in the MS scan and compute the correspondent ratios.

Label-free techniques

The third category deals with the data without labels. Protein quantification without isotopic labeling determines protein abundance by comparing peptide signal intensities in sequential MS spectra. The method uses peptide mass and its corresponding elution time to uniquely identify peptide pairs that have significant intensity differences between two LC/MS runs. The peaks of interest are selected and analyzed by MS/MS in order to identify the peptide. As the instrumentation for LC/MS is becoming more reproducible, it is anticipated that label-free techniques will gain in popularity.

> Label Free Quantitation: Comparison of a single peptide in different runs with different intensities

New Quantitation Software Package Based on PEAKS Identification

General Process

All the three types of quantitation analysis follow the process as below:

1) Data Preprocessing: the data preprocessing for quantitation is quite different from that used in protein identification. New statistical models and algorithms are used a) to merge spectra with similar retention time and m/z values, b) determine charge state when necessary, c) remove poor quality MS/MS scans, d) remove noise, e) centroid and f) deconvolute data within MS/MS scans.

2) Parsing the PEAKS protein identification results: supporting peptides are extracted from the PEAKS database search results and mapped back to the corresponding spectra for each identified protein

3) Protein quantitation: the ratio of each identified labeled peptide is calculated from the intensities of MS peaks that differ in mass by the mass of the label (for ICAT, SILAC) or from the intensities of MS/MS peaks of special mass reagents (for iTRAQ, ExacTag). Statistical methods are then applied to calculate the relative protein abundance and the associated standard deviation.

Removal of Poor Quality MS/MS Spectra Prior to Analysis

Peptide Charge State Determination

We examine the initial MS survey scan of a peptide to determine the peptide precursor charge state. But we cannot use this method with low resolution data, as that obtained from most ion-trap instruments. If we let a protein identification tool decide the charge, there is an in creased risk of false positive matches, which triples the search time. In PEAKS, an algorithm is built into the software to find precursor charges with high confidence, using low resolution tandem mass spectra data alone. The algorithm takes less than four seconds to correctly assign charge on 313 spectra, with 92% accuracy [3].

Peptide Quantitation ICAT/SILAC

For ICAT/SILAC labeling, the ratio of each identified labeled peptide is calculated from the intensities of MS peaks that differ in mass by the mass of the heavy and light labels. The abundance of a peptide is obtained by averaging the ratios from all the observed charge states of that peptide. Dixon's test algorithm is used to remove extreme values (outliers) from a continuous data set. Statistical methods are then applied to calculate the relative protein abundance and its associated log deviation [4].

BSA samples were labeled with either light or heavy cleavable ICAT reagent and digested with trypsin. The light and heavy-labeled samples were then mixed together with ratios of approximately 1:1 and 4:1. These samples were analyzed by LC MS and MS/MS on a Waters QTOF instrument. The software successfully identified 4 of ICAT derived peptides that differ exactly by 9 Da as light/heavy pairs. The correct abundance ratio for each sample was determined, which indicates that the software can accurately determine abundance ratios over the dynamic range provided for this labeling experiment.

ICAT Quantitation			
Ratio 1:1			
	Heavy:Light	SD	
P02769 ALBU_BOVIN	1.146962	0.089292355	
C[-]C[-]TKPESER	0.03	Outlier	
C[-]C[-]TESLVNR	0.26	Outlier	
EAC[+]FAVEGPK	1.0103922		
LKPDPNTLC[+]DEFK	1.056511		
SHC[+]LAEVEK	1.0819472		
YLC[+]DNQDTLSSK	1.1508412		
YLC[-]DNQDTLSSK	1.1607366		
QNC[-]DQFEK	1.2042723		
QNC[+]DQFEK	1.2077675		
GAC[+]LLPK	1.2794976		
C[+]ASLQK	2.21	Outlier	
C[-]ASLQK	2.21	Outlier	

iTRAQ

For iTRAQ labeling, the ratio of labeled peptides is determined at the MS/MS level. The first stage for iTRAQ quantitation analysis is to associate each reporter ion with a group of peaks with specific m/z values in the MS/MS scan. In the second stage, a statistical algorithm is used to decide significant peaks in each group. Then all the significant peaks in each group are centralized separately. The abundance of a peptide is obtained from the ratios of centralized peak intensities for reporter ions.

Removal of Outliers

If we assume that the abundance ratio of any peptide belonging to a protein Proteins from E. coli BL21 cells were digested in trypsin at a protein to enzyme ratio is representative of the abundance ratio of that protein, then in theory if Peptide De Novo Sequencing by MS/MS. Rapid Communications in Mass of 10:1. The digests were labeled with ITRAQ reagent according to the follows that all peptides belonging to a protein should have the same Spectrometry, 17(20):2337-2342. 2003. Early version appeared in 50th ASMS manufacturer's protocol at a protein to reagent ratio of 1:5 and 1:10. These samples were then separated by SCX high performance liquid chromatography (HPLC) and abundance ratio. An outlier is a data point within a data set where these Conference 2002. analyzed by nano-ESI MS/MS using a Tempo nanoflow MDLC system coupled to a Clark Chen, Iain Rogers, Filtering out MS/MS spectra of insufficient values are statistically different from the main body of the data. Outliers QSTAR Elite Qq-TOF system equipped with a NanoSpray source and heated quality before database searching (ASMS 2006 poster presentation). have to be removed when calculating the protein abundance. To find and interface. 3. Clark Chen, Iain Rogers, Intact Peptide Charge Determination from Ion remove outliers, the software computes the ratio between the difference of the minimum [or maximum value] with its neighbor value and the Trap MS/MS(ASMS 2006 poster presentation). 115:114 1:10 0.22672254 117:114 SD 1:1 1:10 0.049005963 0.82194555 0.1736066 0.14183252 0.028204044 116:114 117.114 Actual ratio P0A6N3 | EFTU_ECO57 Peptides difference of the maximum and minimum values. This ratio should follow 4. Weijie Yang, Clark Chen, Iain Rogers, Bin Ma, Gilles Lajoie, Derek Smith, PEAKS Q: Software for MS-based quantification of stable isotope labeled a certain distribution. The outl peptides (Bioinformatics Solutions Inc., Genome BC Proteomics Centre, removed from the data set if does University of Western Ontario) ASMS 2006 poster WP531

ICAT Quantitation Ratio 4:1	
P02769 ALBU_BOVIN	Heavy:Light 1.146962
YNGVFOEC[+]C[+]OAEDK	0.18
C[-]C[-]TKPESER	0.99
C[+]C[+]TKPESER	0.99
C[-]C[-]TESLVNR	2.75
YLC[-]DNQDTLSSK	3.55
LKPDPNTLC[-]DEFK	3.92
MPC[-]TEDYLSLLLNR	4.04
RPC[-]FSALTPDETYVPK	4.65
SHC[-]LAEVEK	5.72
C[-]ASLQK	5.76
EAC[+]FAVEGPK	5.87
EAC[-]FAVEGPK	5.93
DDPHAC[-]YSTVFDK	6.06
QNC[-]DQFEK	6.16
LC[-]VLHEK	6.39

Lei Xin¹; Gilles Lajoie²; Chris Hughes²; Bin Ma²; Derek Smith³

¹Bioinformatics Solutions Inc, Waterloo, ON ²University of Western Ontario, London, ON ³University of Victoria-Genome BC Proteomics Centre, Victoria, BC

Visual Verification

No matter what kind of technique is used, protein quantification analysis is PEAKS quantitation is demonstrated to be robust, easy to use software for still a difficult task. Improper parameter settings will often cause high quantitation of peptides from mass spectrometry. Its protein quantitation deviation from the actual ratios. In this manner, visual inspection of raw accuracy is well within experimental error, and significance of abundance spectra becomes very important. It allows researchers the chance to adjust changes between samples is easy to see. This is available as part of the the parameter setting to gain much more accurate ratios. The PEAKS PEAKS Studio 5.0 proteomic softwaer. quantification package provides a 2D view of the MS/MS spectrum as well as a 3D view of the parent scan for each identified peptide. Thus the actual ratios can be easily verified by inspecting the correspondent raw spectra.

iTRAQ Quantitation

e outlying minimum [or maximum] value is f does not follow the underlying distribution.	G[1]LTLNTSHVEYDTPTR 0.24 0.93 G[1]LTLNTSHVEYDTPTR 0.19 1.08 G[1]LTLNTSHVEYDTPTR 0.2 1.01 G[1]LTLNTSHVEYDTPTR 0.26 1.2 G[1]LTLNTSHVEYDTPTR 0.15 0.98 G[1]LTLNTSHVEYDTPTR 0.23 1.17 G[1]LTLNTSHVEYDTPTR 0.2 0.95
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
SD 0.089292355 Outlier Outlier Outlier Outlier Outlier Outlier NOV I NOV NOV I NOV I NOV NOV NOV NOV NOV NOV NOV NOV NOV NOV	SILAC QuantitationE14K mouse embryonic stem cells (mE cultured in SILAC media. The light labelled isotopic samples were mixed with based on total protein concentration digestion. The mixture was digested with The resulting peptides were extreacted phase extraction cartridge and then analy MS and MS/MS on a Waters Q-TOF UltimeProteinProtein Ratio (H:L)ProteinProtein Ratio (H:L)
	PeptideHeavy:LightisOutlierLSGLLYEETRGVLK0.1OutlierVLGAR0.11OutlierDNLQGLTK[2]PALR[1]R[1]2.71TVTAMDVVYALK[2]R[1]3.02DAVTYTEHAK[2]3.74LSGLLYEETR[1]GVLK[2]3.74LSGLLYEETR[1]GVLK[2]3.74VFLENVLR[1]5.1VLLDLQDNLNLHLLAR[1]5.32DNLQGLTK[2]PALR[1]5.83VFLENVLR[1]DAVTYTEHAK[2]6LSGLLYEETR[1]GVLK[2]7.21TVTAMDVVYALK[2]R[1]11.65
	ProteinProtein Ratio (H:L)SDQ8CGP6 H2A1H_MOUSE3.49739030.9250561PeptideHeavy:LightisOutlierAGLQFPVGR0.32OutlierLLR[1]K[2]GNYSER[1]2.59HLQLALRNDEELNKLLGR2.6HLQLALR[1]NDEELNK[2]LLGR[1]3.04NDEELNKLLGR3.71HLQLALR[1]NDEELNK[2]LLGR[1]4.3NDEELNK[2]LLGR[1]4.83
	Protein P58252 EF2_MOUSEProtein Ratio (H:L) 3.842803SD 0.98382316Peptide LLEK[2]LDLK[2]Heavy:Light 2.4 GPLMMYLSK[2]isOutlierK[2]GLK[2]EGLPALDNFLDK[2]L3.78ITLLMMGR[1]GHVFEESQVAGTPMFVVK[2]4.85 K[2]GLK[2]GLK[2]5.16 EGLPALDNFLDK[2]LK[2]GLK[2]5.16 EGLPALDNFLDK[2]L6VLAEK[2]10.52Outlier
	Initigitation 2.6 Hitigitation 3.04 NDEELNKLIGR 3.71 Hitigitation 4.3 NDEELNK[2]LLGR[1] 4.3 NDEELNK[2]LLGR[1] 4.83 Protein Protein Ratio (H:L) P58252 EF2_MOUSE 3.842803 Peptide Heavy:Light LLEK[2]LDLK[2] 2.4 GPLMMYLSK[2] 2.79 K[2]GLK[2]EGLPALDNFLDK[2]L 3.78 TILLMMGR[1] 3.79 GHVFEESQVAGTPMFVVK[2] 4.85 K[2]GLK[2] 5.16 EGLPALDNFLDK[2]L 6 YLAEK[2] 10.53 Outlier 10.53

Results and Conclusions

Reference

1. 1. Bin Ma, Kaizhong Zhang, Christopher Hendrie, Chengzhi Liang, Ming Li, Amanda Doherty-Kirby, Gilles Lajoie. PEAKS: Powerful Software for

