Identification of potential antigenic peptides of Brucella through proteome and peptidome

Pei, Meijuan, et al. “Identification of potential antigenic peptides of Brucella through proteome and peptidome.” Veterinary Medicine and Science 9.1 (2023): 523-534. https://doi.org/10.1002/vms3.1048

Abstract

Background

Brucellosis, caused by Brucella spp., is a major zoonotic public health threat. Although several Brucella vaccines have been demonstrated for use in animals, Brucella spp. can cause human infection and to date, there are no human-use vaccines licensed by any agency. Recently, methods in vaccine informatics have made major breakthroughs in peptide-based epitopes, opening up a new avenue of vaccine development.

Objectives

The purpose of this article was to identify potential antigenic peptides in Brucella by proteome and peptidome analyses.

Methods

Mouse infection models were first established by injection with Brucella and spleen protein profiles were then analysed. Subsequently, the major histocompatibility complex class I or II (major histocompatibility complex [MHC]-I/II)-binding peptides in blood samples were collected by immunoprecipitation and peptides derived from Brucella proteins were identified through liquid chromatography–mass spectrometry (LC-MS/MS). These peptides were then evaluated in a variety of ways, such as in terms of conservation in Brucella and synchronicity in predicted peptides (similarity and coverage), which allowed us to more effectively measure their antigenic potential.

Results

The expression of the inflammatory cytokines IL1B and IFN-γ was significantly altered in the spleen of infected mice and some Brucella proteins, such as Muri, AcpP and GroES, were also detected. Meanwhile, in blood, 35 peptides were identified and most showed high conservation, highlighting their potential as antigen epitopes for vaccine development. In particular, we identified four proteins containing both MHC-I- and MHC-II-binding peptides including AtpA, AtpD, DnaK and BAbS19_II02030. They were also compared with the predicted peptides to estimate their reliability.

Conclusions

The peptides we screened could bind to MHC molecules. After being stimulated with antigen T epitopes, Memory T cells can stimulate T cell activation and promote immune responses. Our results indicated that the peptides we identified may be good candidate targets for the design of subunit vaccines and these results pave the way for the study of safer vaccines against Brucella.