Chen, Yalan, et al. “Monoclonal antibody‐based systematic identification of SUMO1‐modification sites reveals TFII‐I SUMOylation is involved in tumor growth.” Journal of Cellular Physiology (2023). https://doi.org/10.1002/jcp.31080
Abstract
SUMOylation plays an essential role in diverse physiological and pathological processes. Identification of wild-type SUMO1-modification sites by mass spectrometry is still challenging. In this study, we produced a monoclonal SUMO1C-K antibody recognizing SUMOylated peptides and proposed an efficient streamline for identification of SUMOylation sites. We identified 471 SUMOylation sites in 325 proteins from five raw data. These identified sites exhibit a high positive rate when evaluated by mutation-verified SUMOylation sites. We identified many SUMOylated proteins involved in mitochondrial metabolism and non-membrane-bounded organelles formation. We proposed a SUMOylation motif, ΨKXD/EP, where proline is required for efficient SUMOylation. We further revealed SUMOylation of TFII-I was stimulated by growth signals and was required for nucleus-localization of p-ERK1/2. Mutation of SUMOylation sites of TFII-I suppressed tumor cell growth in vitro and in vivo. Taken together, we provided a strategy for personalized identification of wild-type SUMO1-modification sites and revealed the physiological significance of TFII-I SUMOylation in this study.