Zan, Rong, et al. “Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates.” Foods 12.8 (2023): 1574. https://doi.org/10.3390/foods12081574
Abstract
Alcohol dehydrogenase (ADH) is one of the main rate-limiting enzymes in alcohol metabolism. Food protein-derived peptides are thought to have ADH activating ability. We verified for the first time that chickpea protein hydrolysates (CPHs) had the ability to activate ADH and identified novel peptides from them. CPHs obtained by hydrolysis with Alcalase for 30 min (CPHs-Pro-30) showed the highest ADH activating ability, and the ADH activation rate could still maintain more than 80% after in vitro simulated gastrointestinal digestion. We have verified four peptides with activation ability to ADH: ILPHF, MFPHLPSF, LMLPHF and FDLPALRF (concentration for 50% of maximal effect (EC50): 1.56 ± 0.07 µM, 1.62 ± 0.23 µM, 1.76 ± 0.03 µM and 9.11 ± 0.11 µM, respectively). Molecular docking showed that the mechanism for activating ADH was due to the formation of a stable complex between the peptide and the active center of ADH through hydrogen bonding. The findings suggest that CPHs and peptides with ADH activating ability may be developed as natural anti-alcoholic ingredients to prevent alcoholic liver disease (ALD).