Physiological and proteomic responses of Chlamydomonas reinhardtii to arsenate and lead mixtures

Ye, Menglei, et al. “Physiological and proteomic responses of Chlamydomonas reinhardtii to arsenate and lead mixtures.” Ecotoxicology and Environmental Safety 242 (2022): 113856. https://doi.org/10.1016/j.ecoenv.2022.113856

Abstract

Arsenic (As) and lead (Pb) are frequently emitted from various sources into environment, but microbial responses to their combined toxicity have not been systematically investigated. In this study, Chlamydomonas reinhardtii was exposed to two levels of arsenate (As (V), 50, 500 μg/L), Pb (II) (500, 5000 μg/L) and their mixture (50 μg/L As (V) + 500 μg/L Pb (II); 500 μg/L As (V) + 5000 μg/L Pb (II)). The growth of C. reinhardtii was inhibited more remarkably by As (V) than by Pb (II). The As stress was alleviated by Pb in the 50 μg/L As (V) + 500 μg/L Pb (II) treatment, but was enhanced upon the 500 μg/L As (V) + 5000 μg/L Pb (II) exposure, with more pronounced changes in a number of physiological parameters of the algal cells. Proteomic results showed that 71 differently expressed proteins (DEPs) in the treatment of 50 μg/L As (V) + 500 μg/L Pb (II), and 167 DEPs were identified in that of 500 μg/L As (V) + 5000 μg/L Pb (II). These proteins were involved in energy metabolism, photosynthetic carbon fixation, reactive oxygen scavenging and defense, and amino acid synthesis. Taken together, these physiological and proteomic data demonstrated that C. reinhardtii could resist the As (V) and Pb (II) combined treatments through extracellular complexation and intracellular pathways.