Liu, H-H., et al. Production and Function of Different Regions from Mytichitin-1 of Mytilus coruscus. Fish & Shellfish Immunology. S1050-4648(18)30714-9. 28/10/2018.
Chitinase is an important enzyme for many physiological processes. Mytichitin-1 is a chitinase-like protein in Mytilus coruscus, and its C-terminal 55-AA fragment (mytichitin-CB) is a novel antimicrobial peptide, suggesting a new immune process in which chitinase is involved; mytichtin-1 may have various forms in the different biological processes of M. coruscus. Thus, the study of mytichitin-1 will be helpful for understanding the mechanism of mussel immune biology and the functional diversity of chitinase. In this study, mytichitin-1 was recombinantly expressed with different lengths, full-length mytichtin-1 (rMchi-F) and the N-terminal region (rMchi-N) in Escherichia coli BL21 with codon optimization. The results of SDS-PAGE, Western blotting, and mass spectrometry confirmed that the two forms of mytichitin-1 had been successfully recombinant expressed with a yield of 40 mg purified enzyme per L culture. In addition, the 55-AA fragment of mytichitin-CB was chemically synthesized (sMchi-CB). After purification and oxidation, the functions of the three protein products were analysed, including chitin degradation, chitin binding, and antimicrobial activities. Both rMchi-F and rMchi-N displayed enzymatic activity with the optimum pH of 4.0 and optimum temperature of 40 °C, and rMchi-N showed a stronger activity than rMchi-F. Enzymatic activities of rMchi-F and rMchi-N were stimulated by the metal ions Fe2+, Ba2+, and Na+ and partially inhibited by Cu2+, Ni2+ and Zn2+. rMchi-F, rMchi-N, and sMchi-CB had the ability to combine with colloid chitin. The antimicrobial activities of these proteins were tested against bacteria and fungi, and the results indicated the strongest activity for sMchi-CB and the weakest activity for rMchi-N. Using a prepared anti-rMchi-F polyclonal antibody, immunohistochemistry and immunoprecipitation were performed and the results revealed the location of mytichitin-1 in mantle, digestive gland and blood cells. In addition, two forms of mytichitin-1, mytichitin-CB (6 kD) and full-length mytichitin-1 (48 kD), were detected, and a 35 kD protein was identified as the third form of mytichitin-1, existing in various tissues of M. coruscus. These findings suggest that mytichitin-1 may play different roles, with at least three forms, in different M. coruscus tissues.